Inter-species inference of gene set enrichment in lung epithelial cells from proteomic and large transcriptomic datasets

نویسندگان

  • Sahand Hormoz
  • Gyan Bhanot
  • Michael Biehl
  • Erhan Bilal
  • Pablo Meyer
  • Raquel Norel
  • Kahn Rhrissorrakrai
  • Adel Dayarian
چکیده

MOTIVATION Translating findings in rodent models to human models has been a cornerstone of modern biology and drug development. However, in many cases, a naive 'extrapolation' between the two species has not succeeded. As a result, clinical trials of new drugs sometimes fail even after considerable success in the mouse or rat stage of development. In addition to in vitro studies, inter-species translation requires analytical tools that can predict the enriched gene sets in human cells under various stimuli from corresponding measurements in animals. Such tools can improve our understanding of the underlying biology and optimize the allocation of resources for drug development. RESULTS We developed an algorithm to predict differential gene set enrichment as part of the sbv IMPROVER (systems biology verification in Industrial Methodology for Process Verification in Research) Species Translation Challenge, which focused on phosphoproteomic and transcriptomic measurements of normal human bronchial epithelial (NHBE) primary cells under various stimuli and corresponding measurements in rat (NRBE) primary cells. We find that gene sets exhibit a higher inter-species correlation compared with individual genes, and are potentially more suited for direct prediction. Furthermore, in contrast to a similar cross-species response in protein phosphorylation states 5 and 25 min after exposure to stimuli, gene set enrichment 6 h after exposure is significantly different in NHBE cells compared with NRBE cells. In spite of this difference, we were able to develop a robust algorithm to predict gene set activation in NHBE with high accuracy using simple analytical methods. AVAILABILITY AND IMPLEMENTATION Implementation of all algorithms is available as source code (in Matlab) at http://bhanot.biomaps.rutgers.edu/wiki/codes_SC3_Predicting_GeneSets.zip, along with the relevant data used in the analysis. Gene sets, gene expression and protein phosphorylation data are available on request. CONTACT [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Signal Transduction from Protein Phosphorylation to Gene Expression

BACKGROUND Signaling networks are of great importance for us to understand the cell's regulatory mechanism. The rise of large-scale genomic and proteomic data, and prior biological knowledge has paved the way for the reconstruction and discovery of novel signaling pathways in a data-driven manner. In this study, we investigate computational methods that integrate proteomics and transcriptomic d...

متن کامل

Potential biological insights revealed by an integrated assessment of proteomic and transcriptomic data in human colorectal cancer.

In the post-genomic era, the main aim of cancer research is organizing the large amount of data on gene expression and protein abundance into a meaningful biological context. Performing integrated analysis of genomic and proteomic data sets is a challenging task. To comprehensively assess the correlation between mRNA and protein expression, we focused on the gene set enrichment analysis, a rece...

متن کامل

KEGGexpressionMapper allows for analysis of pathways over multiple conditions by integrating transcriptomics and proteomics measurements

Motivation: In transcriptomic and proteomics-based studies, the abundance of genes is often compared to functional pathways such as the Kyoto Encyclopaedia at Genes and Genomes (KEGG) to identify active metabolic processes. Even though a plethora of tools allow to analyze and to compare omics data in respect to KEGG pathways, the analysis of multiple conditions is often limited to only a define...

متن کامل

Integration of pan-cancer transcriptomics with RPPA proteomics reveals mechanisms of epithelial-mesenchymal transition

Integrating data from multiple regulatory layers across cancer types could elucidate additional mechanisms of oncogenesis. Using antibody-based protein profiling of 736 cancer cell lines, along with matching transcriptomic data, we show that pan-cancer bimodality in the amounts of mRNA, protein, and protein phosphorylation reveals mechanisms related to the epithelial-mesenchymal transition (EMT...

متن کامل

Gene Regulation Network Based Analysis Associated with TGF-beta Stimulation in Lung Adenocarcinoma Cells

Background: Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and the effect of TGF-β stimulatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2015